多肽是什么
肽(peptide)是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。与高分子聚合物不同,作为肽链基本构建的单体(monomer)是各种氨基酸残基,它们的侧链结构各不相同。因此肽不是高分子聚合物。与蛋白质相比,肽的共价键形成的链结构与前者相同,但链长度及分子量远远小于前者。因此,肽不是蛋白质。尽管如此,肽与蛋白质之间还是存在许多相近的理化性质,如亲水性、极性、二级结构、易酶解、金属络合性等。从分子量大小上很难在某个准确的数值上把肽与蛋白质区别开。
一般肽中含有的氨基酸的数目为二到九时,可根据肽中氨基酸的数量的不同,有多种不同的称呼:由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等,一直到九肽。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换言之,蛋白质有时也被称为多肽。
多肽的结构
肽分子主要骨架结构是由[-氮原子-碳原子-碳原子-]反复串接而成。其中两个碳原子的化学状态又不相同,N原子右侧的为带侧链基(Gly除外)的α-C原子,N原子左侧的为酰基C原子。除了Pro残基外,出现在肽及蛋白质分子中的其他十九种氨基酸残基上的N原子均带有一个H原子,后者作为H的供体可以与肽链上酰基中的O原子(H的受体)形成氢键。除了含残基数较少的寡肽外,一般的肽分子中往往存在密度很高的氢键缔合结构,即肽的二级结构。这些结构因为H供体与受体的位置差别,又存在一些不同的形式。
α-螺旋(α-Helix)
蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。
氨基酸残基的R基团位于螺旋的外侧,并不参与螺旋的形成,但其大小、形状和带电状态却能影响螺旋的形成和稳定
β折叠(β-Sheet)
当肽链上连续存在许多疏水性残基(如Leu、He、Val、Met、Tyr、Trp、Phe、Ala)时,更容易在每个酰胺结构上发生链间平行方式的氢键缔合。
从β-Sheet的结构上可以看出沿着肽键延伸的方向主链两侧存在大量的氢键。它们可使肽链之间紧紧地聚集(aggregation)在一起。值得指出的是,当β-Sheet结构在整个主链二级结构中占的比例越大时,这个肽的溶解性就越差。这种特征不但会造成合成肽时,反应存在困难,而且在体内还会引发特殊的生物学后果。最明显的实例就是疯牛病、帕金森病及AD(早老年性痴呆)等的病理部位均含有大量的不溶性蛋白沉积,其中含有致密的β-Sheet结构。
β-转角(β-turn)
β-转角结构(β-turn)又称为β-弯曲(β-bend)、β-回折(β-reverse turn)、发夹结构(hairpin structure)和U型转折等。
与α-Helix及β-Sheet结构中存在大量氢键不同的是,肽键中间有时存在相邻的三个残基由一个氢键形成的十元环结构,由此结构延伸出的N端主链及C端主链几乎沿同一方向平行展开。这种含三个残基的十元环就是β-turn结构。此外,尚有两个残基参与的相当于七元环的r-turn结构。但这种结构中的H键缔合强度较弱。β-turn处在肽键的U形拐弯的地方,很容易与体内蛋白受体接近。实际上,可引发许多生物活性效应的配基与受体如与底物、激素与靶点、抗原与抗体的结合往往是由β-turn结构的参与而完成的。因此许多新药研究也是基于β-turn的结构与功能而设计的。
无序卷曲(random coil)
在肽链的序列结构中,如果没有可形成氢键缔合的一级结构就不会引发α-helix、β-sheet及β-turn等二级结构。这种肽分子的主链就会处于无规律、松散状态,称之为无序卷曲。这种结构与环境中的溶剂分子接触最充分,因而溶解性很好。具有无序卷曲链的肽化合物不但很容易组装合成,而且在机体内也易于转运。已有的研究表明,肽链中如果较多地存在Pro、Gly、Asn、Ser、Asp、Thr等残基,它们往往干扰规则的氢键缔合而出现无序卷曲状态。因此在结构设计中合理地引入这类残基,可能会改善中间体及终产物的溶解性。